Let $p$ and $q$ denote the following statements
$p$ : The sun is shining
$q$ : I shall play tennis in the afternoon

The negation of the statement "If the sun is shining then I shall play tennis in the afternoon", is 

  • [AIEEE 2012]
  • A

    $q \Rightarrow  \sim p$

  • B

    $q \wedge  \sim p$

  • C

    $p \wedge  \sim q$

  • D

    $ \sim q \Rightarrow  \sim p$

Similar Questions

The statement $( p \wedge(\sim q )) \Rightarrow( p \Rightarrow(\sim q ))$ is

  • [JEE MAIN 2023]

Which of the following statements is a tautology?

  • [JEE MAIN 2022]

Which of the following is not a statement

The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to :

  • [JEE MAIN 2015]

Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [AIEEE 2009]