If $2\,cos\,\theta  + sin\, \theta \, = 1$ $\left( {\theta  \ne \frac{\pi }{2}} \right)$ , then $7\, cos\,\theta + 6\, sin\, \theta $ is equal to

  • [JEE MAIN 2014]
  • A

    $\frac{1}{2}$

  • B

    $\frac{46}{5}$

  • C

    $\frac{11}{2}$

  • D

    $2$

Similar Questions

If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are

If $\cos \theta = \frac{{ - 1}}{2}$ and ${0^o} < \theta < {360^o}$, then the values of $\theta $ are

The solution of $tan\,\, 2\theta\,\, tan\theta = 1$ is

If $|k|\, = 5$ and ${0^o} \le \theta \le {360^o}$, then the number of different solutions of $3\cos \theta + 4\sin \theta = k$ is

If  $a = \sin \frac{\pi }{{18}}\sin \frac{{5\pi }}{{18}}\sin \frac{{7\pi }}{{18}}$ and $x$ is the solution of the equatioin $y = 2\left[ x \right] + 2$ and $y = 3\left[ {x - 2} \right] ,$ where $\left[ x \right]$ denotes the integral part of $x,$ then $a$ is equal to :-