If $A, B, C, D$ are the angles of a cyclic quadrilateral taken in order, then
$cos(180^o + A) + cos(180^o -B) + cos(180^o -C) -sin(90^o -D)=$
$0$
$1$
$-1$
None of these
Solve $\cos x=\frac{1}{2}$
The number of solutions $x$ of the equation $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ in the interval $[2,3]$ is
If $\cos \theta + \sec \theta = \frac{5}{2}$, then the general value of $\theta $ is
The general value of $\theta $satisfying the equation $2{\sin ^2}\theta - 3\sin \theta - 2 = 0$ is
If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are