જો $a = \sin \frac{\pi }{{18}}\sin \frac{{5\pi }}{{18}}\sin \frac{{7\pi }}{{18}}$ અને $x$ એ સમીકરણો $y = 2\left[ x \right] + 2$ અને $y = 3\left[ {x - 2} \right]$નો ઉકેલ છે, જ્યાં $\left[ x \right]$ એ $x$ નો પૂર્ણાક ભાગ દર્શાવે છે તો $a$ =
$\left[ x \right]$
$\frac{1}{{\left[ x \right]}}$
$2\left[ x \right]$
${\left[ x \right]^2}$
જો $cosx + secx =\, -2$, હોય તો ધન પૂર્ણાક $n$ માટે $cos^n x + sec^n x$ ની કિમત
સમીકરણ $3\tan (A - {15^o}) = \tan (A + {15^o})$ નો ઉકેલ મેળવો.
સમીકરણ યુગમો $x\,\, + \,\,y\,\, = \,\,\frac{{2\pi }}{3},\,{\rm{cos}}\,{\rm{x + }}\,{\rm{ cos}}\,{\rm{y}}\,{\rm{ = }}\,\frac{3}{2},$ જ્યાં $x$ અને $y$ એ વાસ્તવિક હોય તેવા ઉકેલોનો ગણ ...... છે.
જો $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, તો $\theta $ ની શક્ય કિમત મેળવો.
sin $2 \theta+\tan 2 \theta>0$ થાય તેવી છે $\theta \in[0,2 \pi]$ ની શક્ય તમામ કિંમતો ........... માં આપેલ છે.