यदि $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ और घटनाएँ $A$ तथा $B$ स्वतन्त्र हों, तो $x= $
$\frac{1}{3}$
$\frac{1}{2}$
$\frac{2}{3}$
इनमें से कोई नहीं
$A$ तथा $B$ एक यादृच्छिक प्रयोग की दो घटनाएँ हैं और $P\,(A) = 0.25$, $P\,(B) = 0.5$ तथा $P\,(A \cap B) = 0.15,$ तो $P\,(A \cap \bar B) = $
तीन घटनाओं $A, B$ एवं $C$ के लिये प्रायिकताओं $P$ ($A$ अथवा $B$ में केवल एक घटित होती है)= $P$ ($B$ अथवा $C$ में केवल एक घटित होती है) = $P$ ($A$ अथवा $C$ में केवल एक घटित होती है)= $p$ तथा $P$ (तीनों घटनाएँ एक साथ घटित होती हैं) $ = {p^2},$ जहाँ $0 < p < 1/2$ है। तीनों घटनाओं $A, B$ और $C$ में कम से कम एक के घटित होने की प्रायिकता है
$A$ के सत्य बोलने की प्रायिकता $\frac{4}{5}$ है जबकि $B$ के सत्य बोलने की प्रायिकता $\frac{3}{4}$ है। किसी एक तथ्य पर दोनों में विरोधाभास हो, उसकी प्रायिकता है
किसी घटना के प्रतिकूल संयोगानुपात $5 : 2$ हैं एवं एक अन्य घटना के अनुकूल संयोगानुपात $6 : 5$ हैं। यदि दोनों घटनायें स्वतंत्र हों, तो इन घटनाओं में से कम से कम एक घटना के घटित होने की प्रायिकता है
यदि $P(A) = 0.25,\,\,P(B) = 0.50$ तथा $P(A \cap B) = 0.14,$ तब $P(A \cap \bar B) =$