$A$ और $B$ दो घटनाएँ इस प्रकार हैं कि $P ( A )=0.54, P ( B )=0.69$ और $P ( A \cap B )=0.35 .$
ज्ञात कीजिए
$P \left( B \cap A ^{\prime}\right)$
It is given that $P ( A )=0.54$, $P ( B )=0.69$, $P (A \cap B)=0.35$
We know that
$n\left( B \cap A ^{\prime}\right)=n( B )-n( A \cap B )$
$\Rightarrow \frac{n\left( B \cap A ^{\prime}\right)}{n( S )}$ $=\frac{n( B )}{n( S )}-\frac{n( A \cap B )}{n( S )}$
$\therefore P \left( B \cap A ^{\prime}\right)= P ( B )- P ( A \cap B )$
$\therefore P \left( B \cap A ^{\prime}\right)=0.69-0.35=0.34$
एक शहर में $20\%$ लोग अंगे्रजी समाचार पत्र पढ़ते हैं, $40\%$ हिन्दी समाचार पत्र पढ़ते हैं एवं $5\%$ दोनों अखबार पढ़ते हैं, तो अखबार न पढ़ने वालों का प्रतिशत है
यदि $A$ व $B$ दो घटनायें इस प्रकार हैं कि $P(A) = \frac{1}{2}$ व $P(B) = 2/3,$ तो
एक पासे पर $1,2,3$ लाल रंग से और $4,5,6$ हरे रंग से लिखे गए हैं। इस पासे को उछाला गया। मान लें $A$ घटना 'संख्या सम है' और $B$ घटना 'संख्या लाल रंग से लिखी गई है', को निरूपित करते हैं। क्या $A$ और $B$ स्वतंत्र हैं?
यदि $A$ तथा $B$ दो स्वेच्छ घटनायें हो, तब
संतरों के एक डिब्बे का निरीक्षण उसमें से तीन संतरों को यादृच्छया बिना प्रतिस्थापित किए हुए निकाल कर किया जाता है। यदि तीनों निकाले गए संतरे अच्छे हों तो डिब्बे को बिक्री के लिए स्वीकृत किया जाता है अन्यथा अस्वीकृत कर देते हैं। एक डिब्बा जिसमें $15$ संतरे हैं जिनमें से $12$ अच्छे व $3$ खराब संतरे हैं, के बिक्री के लिए स्वीकृत होने की प्रायिकता ज्ञात कीजिए।