Given two independent events $A$ and $B$ such that $P(A) $ $=0.3, \,P(B)=0.6$ Find $P(A$ and $B)$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P(A)=0.3,\,P(B)=0.6$..

Also, $A$ and $B$ are independent events.

$\mathrm{P}(\mathrm{A}$ and  $\mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$

$\Rightarrow  $ $ \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.3 \times 0.6=0.18$

Similar Questions

The probabilities of three events $A , B$ and $C$ are given by $P ( A )=0.6, P ( B )=0.4$ and $P ( C )=0.5$ If $P ( A \cup B )=0.8, P ( A \cap C )=0.3, P ( A \cap B \cap$ $C)=0.2, P(B \cap C)=\beta$ and $P(A \cup B \cup C)=\alpha$ where $0.85 \leq \alpha \leq 0.95,$ then $\beta$ lies in the interval

  • [JEE MAIN 2020]

Two persons $A$ and $B$ throw a (fair)die (six-faced cube with faces numbered from $1$ to $6$ ) alternately, starting with $A$. The first person to get an outcome different from the previous one by the opponent wins. The probability that $B$ wins is

  • [KVPY 2014]

In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted $NSS$ but not $NCC$.

Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Only one of them will qualify the examination.

An event has odds in favour $4 : 5$, then the probability that event occurs, is