दिये गये वृत्त ${x^2} + {y^2} - 4x - 5 = 0$ व ${x^2} + {y^2} + 6x - 2y + 6 = 0$ हैं। माना बिन्दु $P$ $(\alpha ,\beta )$ इस प्रकार है कि इस बिन्दु से दोनों वृत्तों पर खींची गयी स्पर्श रेखायें बराबर हों, तो

  • A

    $2\alpha + 10\beta + 11 = 0$

  • B

    $2\alpha - 10\beta + 11 = 0$

  • C

    $10\alpha - 2\beta + 11 = 0$

  • D

    $10\alpha + 2\beta + 11 = 0$

Similar Questions

यदि बिन्दु $(5, 3)$ से वृत्त ${x^2} + {y^2} + 2x + ky + 17 = 0$ पर खींची गई स्पर्श रेखा की लम्बाई $7$ हो, तो $k$ =

मूल बिन्दु से वृत्त ${x^2} + {y^2} - 2rx - 2hy + {h^2} = 0$ पर खींची गयी स्पर्श रेखाओं के समीकरण हैं

  • [IIT 1988]

यदि बिन्दु $(1,2)$ से वृत्तों ${x^2} + {y^2} + x + y - 4 = 0$ तथा $3{x^2} + 3{y^2} - x - y + k = 0$ पर खींची गयी स्पर्श रेखाओं की लम्बाइयों का अनुपात $4 : 3$ हो, तो $k =$

मूल बिन्दु से वृत्त ${x^2} + {y^2} - 2ax - 2by + {b^2} = 0$ पर खींची गई स्पर्श रेखाएँ परस्पर लम्बवत् हैं, यदि

रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ का अभिलम्ब है, यदि