नीचे दो कथन दिए गए हैं :
कथन$-I :$ विद्युत विभव का मान, किसी धातु के अन्दर एवं उसकी सतह पर नियत रहता है।
कथन$-II :$ किसी आवेशित धातु के बाहर, विद्युत क्षेत्र, धातु के तल के प्रत्येक बिन्दु पर, तल के लम्बवत् होता है।
उपरोक्त कथनों के आधार पर, नीचे दिए गए विकल्पों में से सर्वाधिक उपयुक्त उत्तर चुनें।
कथन$-I$ एवं कथन$-II$ दोनों सही हैं।
कथन$-I$ एवं कथन$-II$ दोनों गलत हैं।
कथन$-I$ सही हैं किन्तु कथन$-II$ गलत है।
कथन$-I$ गलत है किन्तु कथन$-II$ सही है।
एक खोखले गोलाकार आवेशित चालक के मध्य विभव है
$R$ एवं $2 R$ त्रिज्याओं वाले दो विलगित ठोस धात्विक गोलो को इस प्रकार आवेशित किया जाता है, कि दोनों का आवेश घनत्व $\sigma$ है। इसकें बाद गोलो को किसी पतले चालक तार द्वारा जोड़ा जाता है। माना बड़े गोले पर नया आवेश घनत्व $\sigma^{\prime}$ है, तो अनुपात $\frac{\sigma^{\prime}}{\sigma}$ होगा :
$\mathrm{R}_{1}$ तथा $\mathrm{R}_{2}$ त्रिज्या के दो आवेशित गोलीय चालक एक तार से जोड़ दिए जाते हैं। गोलों के पृष्ठ आवेश घनत्वों $\left(\sigma_{1} / \sigma_{2}\right)$ का अनुपात होता है :
यदि $NTP$ पर वायु की परावैद्युत क्षमता $3 \times {10^6}\,V/m$ है। तो $3\,m$ त्रिज्या वाले गोलीय चालक को कितना अधिकतम आवेश दिया जा सकता है
निम्न चित्र में एक आवेशित चालक को एक कुचालक आधार पर रखा गया है। यदि $P$ पर आवेश घनत्व $\sigma $ विभव $V$ तथा विद्युत क्षेत्र की तीव्रता $E$ है तो इन राशियों के $Q$ पर मान होंगे