Given below are two statements.
Statement $I$ : Electric potential is constant within and at the surface of each conductor.
Statement $II$ : Electric field just outside a charged conductor is perpendicular to the surface of the conductor at every point.
In the light of the above statements, choose the most appropriate answer from the options give below.
Both statement $I$ and statement $II$ are correct
Both statement $I$ and statement $II$ are incorrect
Statement $I$ is correct but statement $II$ is incorrect
Statement $I$ is incorrect but and statement $II$ is correct
Two uniformly charged spherical conductors $A$ and $B$ of radii $5 mm$ and $10 mm$ are separated by a distance of $2 cm$. If the spheres are connected by a conducting wire, then in equilibrium condition, the ratio of the magnitudes of the electric fields at the surface of the sphere $A$ and $B$ will be .
Aspherical shell with an inner radius $'a'$ and an outer radius $'b' $ is made of conducting material. Apoint charge $+Q$ is placed at the centre of the spherical shell and a total charge $- q $ is placed on the shell.
Assume that the electrostatic potential is zero at an infinite distance from the spherical shell. The electrostatic potential at a distance $R$ $(a < R < b)$ from the centre of the shell is (where $K = $ $\frac{1}{{4\pi {\varepsilon _0}}}$)
The dielectric strength of air at $NTP$ is $3 \times {10^6}\,V/m$ then the maximum charge that can be given to a spherical conductor of radius $3\, m$ is
‘The interior of a conductor can have no excess charge in the static situation’. Explain.
The electric field near a conducting surface having a uniform surface charge density $\sigma $ is given by