गैलीलियो ने अपनी पुस्तक "टू न्यू. साइंसेज़" में कहा है कि "उन उन्नयनों के लिए जिनके मान $45^{\circ}$ से बराबर मात्रा द्वारा अधिक या कम हैं, क्षेतिज परास बराबर होते हैं" । इस कथन को सिद्ध कीजिए ।
Answer For a projectile launched with velocity
$v _{ o }$ at an angle $\theta_{ o },$ the range is given by
$R=\frac{v_{o}^{2} \sin 2 \theta_{0}}{g}$
Now, for angles, $\left(45^{\circ}+\alpha\right)$ and $\left(45^{\circ}-\alpha\right), 2 \theta_{0}$ is $\left(90^{\circ}+2 \alpha\right)$ and $\left(90^{\circ}-2 \alpha\right),$ respectively. The values of $\sin \left(90^{\circ}+2 \alpha\right)$ and $\sin \left(90^{\circ}-2 \alpha\right)$ are
the same, equal to that of $\cos 2 \alpha .$ Therefore, ranges are equal for elevations which exceed or fall short of $45^{\circ}$ by equal amounts $\alpha$
क्रिकेट का कोई खिलाड़ी किसी गेंद को $100\, m$ की अधिकतम क्षैतिज दूरी तक फेंक सकता है । वह खिलाड़ी उसी गेंद को जमीन से ऊपर कितनी ऊंचाई तक फेंक सकता है ?
प्रक्षेप्य गति के किस बिन्दु पर त्वरण तथा वेग परस्पर लम्बवत् होते हैं
एक प्रक्षेप्य $u$ वेग से, क्षैतिज के साथ $\theta $ कोण बनाते हुये प्रक्षेपित किया जाता है तथा इसकी परास $R$ है। यदि प्रारम्भिक वेग को दोगुना कर दिया जावे तथा प्रक्षेपण कोण $\theta $ ही रहे, तो अब परास होगी
क्षैतिज से $60^{\circ}$ के कोण पर $10 \;ms ^{-1}$ की चाल से $160\; g$ द्रव्यमान की एक गेंद ऊपर की ओर फेंकी जाती हैं। पथ के उच्चतम बिन्दु पर उस बिन्दु के सापेक्ष, जहाँ से गेंद फेंकी गई हैं, गेंद का कोणीय संवेग लगभग है $\left( g =10 \;ms ^{-2}\right)$
किसी लंबे हाल की छत $25\, m$ ऊंची है । वह अधिकतम क्षैतिज दूरी कितनी होगी जिसमें $40\, m s ^{-1}$ की चाल से फेंकी गई कोई गेंद छत से टकराए बिना गुजर जाए ?