फलन ${\sin ^{ - 1}}\sqrt x $ निम्न अंतराल में परिभाषित है

  • A

    $(-1, 1)$

  • B

    $[0, 1]$

  • C

    $[-1, 0]$

  • D

    $(-1, 2)$

Similar Questions

यदि $a, b$ दो नियत धनात्मक पूर्णांक इस प्रकार हों कि $f(a + x) = b + {[{b^3} + 1 - 3{b^2}f(x) + 3b{\{ f(x)\} ^2} - {\{ f(x)\} ^3}]^{\frac{1}{3}}}$ सभी वास्तविक $x$ के लिए तब $f(x)$ आवर्ती फलन है जिसका आवर्तनांक है

फलन $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ का प्रान्त है

  • [AIEEE 2004]

किसी वास्तविक संख्या $x$ के लिए यदि $[x]$ संख्या $x$ के पूर्णांक भाग को प्रदर्शित करें तो निम्न व्यंजक का मान होगा $\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right]$

  • [IIT 1994]

यदि $E = \{ 1,2,3,4\} $ तथा $F = \{ 1,2\} $, तब समुच्चय $E$ से $F$ में बनने वाले आच्छादक फलनों की संख्या है

  • [IIT 2001]

माना $2{\sin ^2}x + 3\sin x - 2 > 0$ और ${x^2} - x - 2 < 0$ ($x$ रेडियन में है), तब $x$ निम्न अन्तराल में होगा

  • [IIT 1994]