मध्यमान प्रमेय $f(b) - f(a) = (b - a)f'({x_1});$   $a < {x_1} < b$ से यदि $f(x) = \frac{1}{x}$, तो${x_1} = $

  • A

    $\sqrt {ab} $

  • B

    $\frac{{a + b}}{2}$

  • C

    $\frac{{2ab}}{{a + b}}$

  • D

    $\frac{{b - a}}{{b + a}}$

Similar Questions

यदि फलन $f(x)=2 x^{3}+ a x^{2}+ b x$ के लिए अंतराल $[-1,1]$ में बिंदु $c =\frac{1}{2}$ पर रोले का प्रमेय लागू है, तो $2 a + b$ का मान है

  • [JEE MAIN 2014]

मध्यमान प्रमेय $\frac{{f(b) - f(a)}}{{b - a}} = f'(c)$ में, यदि $a = 0,b = \frac{1}{2}$ तथा $f(x) = x(x - 1)(x - 2)$ हो, तो $ c$  का मान है

फलन$f(x) = {x^3} - 6{x^2} + ax + b$ रोले प्रमेय की सभी शर्तो को अंतराल $[1, 3]$  में सन्तुष्ट करता है तब $ a $ और $ b$  के क्रमश: मान हैं

मध्यमान प्रमेय $f(b) - f(a) = (b - a)f'(c)$ में यदि $a = 4$, $b = 9$ तथा $f(x) = \sqrt x $ हो, तो $c$  का मान है

माध्यमान प्रमेय सत्यापित कीजिए, यदि अंतराल $[a, b]$ में $f(x)=x^{2}-4 x-3,$ जहाँ $a=1$ और $b=4$ है।