For three vectors $\vec{A}=(-x \hat{i}-6 \hat{j}-2 \hat{k})$, $\vec{B}=(-\hat{i}+4 \hat{j}+3 \hat{k})$ and $\vec{C}=(-8 \hat{i}-\hat{j}+3 \hat{k})$, if $\overrightarrow{\mathrm{A}} \cdot(\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}})=0$, them value of $\mathrm{x}$ is. . . . . .. 

  • [JEE MAIN 2024]
  • A

    $2$

  • B

    $4$

  • C

    $6$

  • D

    $8$

Similar Questions

Find the scalar and vector products of two vectors. $a =(3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ and $b =(- 2 \hat{ i }+\hat{ j }- 3 \hat { k } )$

The angle between the two vectors $\overrightarrow A = 5\hat i + 5\hat j$ and $\overrightarrow B = 5\hat i - 5\hat j$ will be ....... $^o$

The values of $x$ and $y$ for which vectors $A =(6 \hat{ i }+x \hat{ j }-2 \hat{ k })$ and $B =(5 \hat{ i }+6 \hat{ j }-y \hat{ k })$ may be parallel are

Obtain the scalar product of unit vectors in Cartesian co-ordinate system.

A vector ${\overrightarrow F _1}$is along the positive $X-$axis. If its vector product with another vector ${\overrightarrow F _2}$ is zero then ${\overrightarrow F _2}$ could be