ધન સંખ્યાઓ $x,y$ અને $z$  માટે નિશ્રાયક $\left| {\,\begin{array}{*{20}{c}}1&{{{\log }_x}y}&{{{\log }_x}z}\\{{{\log }_y}x}&1&{{{\log }_y}z}\\{{{\log }_z}x}&{{{\log }_z}y}&1\end{array}\,} \right|$ ની કિમત મેળવો.

  • [IIT 1993]
  • A

    $0$

  • B

    $1$

  • C

    ${\log _e}xyz$

  • D

    એકપણ નહી.

Similar Questions

જો $ \alpha _1, \alpha _2$ એ $\alpha $ ની બે કિમંતો છે કે જેથી સુરેખ સમીકરણો $2 \alpha x + y = 5, x - 6y = \alpha $ અને  $x + y = 2$ એ સુસંગત થાય તો $ |2(\alpha _1 + \alpha _2)| $ મેળવો.

જો સમીકરણની સંહતિ $x + ay = 0,$ $az + y = 0$ અને $ax + z = 0$ ને અનંત ઉકેલ હોય, તો $a$ ની કિમત મેળવો

  • [IIT 2003]

જો $\left| {\begin{array}{*{20}{c}}
  {\cos 2x}&{{{\sin }^2}x}&{\cos 4x} \\ 
  {{{\sin }^2}x}&{\cos 2x}&{{{\cos }^2}x} \\ 
  {\cos 4x}&{{{\cos }^2}x}&{\cos 2x} 
\end{array}} \right| = {a_0} + {a_1}\sin x + {a_2}{\sin ^2}x + .....$ તો $a_0$ મેળવો.

સમીકરણની સંહતિ ${x_1} - {x_2} + {x_3} = 2,$ $\,3{x_1} - {x_2} + 2{x_3} = - 6$ અને $3{x_1} + {x_2} + {x_3} = - 18$ નો ઉકેલ . . . .

નીચે આપેલાં શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ શોધો : $(1,0),(6,0),(4,3)$