સમીકરણની સંહતિ ${x_1} - {x_2} + {x_3} = 2,$ $\,3{x_1} - {x_2} + 2{x_3} = - 6$ અને $3{x_1} + {x_2} + {x_3} = - 18$ નો ઉકેલ . . . .

  • A

    ખાલીગણ

  • B

    એકાકી ઉકેલ

  • C

    અનંત ઉકેલ

  • D

    એકપણ નહી.

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}{{{({a^x} + {a^{ - x}})}^2}}&{{{({a^x} - {a^{ - x}})}^2}}&1\\{{{({b^x} + {b^{ - x}})}^2}}&{{{({b^x} - {b^{ - x}})}^2}}&1\\{{{({c^x} + {c^{ - x}})}^2}}&{{{({c^x} - {c^{ - x}})}^2}}&1\end{array}\,} \right| = $

જો સમીકરણ સંહતિ $x+y+z=6 \,; \,2 x+5 y+\alpha z=\beta  \,; \, x+2 y+3 z=14$ એ અનંત ઉકેલ ધરાવે છે તો  $\alpha+\beta$ ની કિમંત મેળવો.

  • [JEE MAIN 2022]

ધારો કે $a ,b ,c $ માટે $b + c \ne 0$ . જો $\left| {\begin{array}{*{20}{c}}a&{a + 1}&{a - 1}\\{ - b}&{b + 1}&{b - 1}\\c&{c - 1}&{c + 1}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{a + 1}&{b + 1}&{c - 1}\\{a - 1}&{b - 1}&{c + 1}\\{{{\left( { - 1} \right)}^{n + 2}} \bullet a}&{{{\left( { - 1} \right)}^{n + 1}} \bullet b}&{{{\left( { - 1} \right)}^n} \bullet c}\end{array}} \right| = 0$ તો $n$ મેળવો.

  • [AIEEE 2009]

$\left| {\,\begin{array}{*{20}{c}}{1 + i}&{1 - i}&i\\{1 - i}&i&{1 + i}\\i&{1 + i}&{1 - i}\end{array}\,} \right| = $

જો $\left| {\,\begin{array}{*{20}{c}}{3x - 8}&3&3\\3&{3x - 8}&3\\3&3&{3x - 8}\end{array}\,} \right| = 0,$ તો $x$ ની કિમત મેળવો.