संतत फलनों (Continuous functions) के प्रत्येक युग्म (pair) $f , g :[0,1] \rightarrow R$ जिनके लिये अधिकतम $\{ f ( x ): x \in[0,1]\}$ = अधिकतम $\{ g ( x ): x \in[0,1]\}$ है, के लिये सत्य कथन है(हैं)

$(A)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+3 f(c)=(g(c))^2+3 g(c)$

$(B)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+f(c)=(g(c))^2+3 g(c)$

$(C)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+3 f(c)=(g(c))^2+g(c)$

$(D)$ किसी $c \in[0,1]$ के लिये $(f(c))^2=(g(c))^2$

  • [IIT 2014]
  • A

    $(B,D)$

  • B

    $(B,C)$

  • C

    $(A,C)$

  • D

    $(A,D)$

Similar Questions

माध्यमान प्रमेय सत्यापित कीजिए यदि अंतराल $[a, b]$ में $f(x)=x^{3}-5 x^{2}-3 x,$ जहाँ $a=1$ और $b=3$ है। $f(c)=0$ के लिए $c \in(1,3)$ को ज्ञात कीजिए।

फलन $f ( x )= x ^{3}-4 x ^{2}+8 x +11, x \in[0,1]$ के लिए लग्रांज मध्यमान प्रमेय में $c$ का मान है

  • [JEE MAIN 2020]

माना कि $f, g:[-1,2] \rightarrow R$ संतत फलन है जो की अंतराल $(-1,2)$ में दो बार अवकलनीय (twice differentiable) है। माना कि $f$ और $g$ के मान, बिन्दुओं $-1,0$ और $2$ पर निम्न सारणी में दर्शाए गए है -

  $x=-1$ $x=0$ $x=2$
$f(x)$ $3$ $6$ $0$
$g(x)$ $0$ $1$ $-1$

यदि प्रत्येक अंतराल $(-1,0)$ और $(0,2)$ में फलन $( f -3 g )$ " कभी भी शून्य का मान नही लेता है, तव सही कथन है (हैं)

$(A)$ $(-1,0) \cup(0,2)$ में, $f^{\prime}(x)-3 g^{\prime}(x)=0$ के तीन ही हल (exactly three solutions) हैं

$(B)$ $(-1,0)$ में, $f ^{\prime}( x )-3 g ^{\prime}( x )=0$ के एक ही हल (exactly one solutions) है

$(C)$ $(0,2)$ में, $f^{\prime}(x)-3 g^{\prime}(x)=0$ के एक ही हल (exactly one solution ) है

$(D)$ $f ^{\prime}( x )-3 g ^{\prime}( x )=0$ को $(-1,0)$ में दो ही हल (exactly two solutions) है और $(0,2)$ में दो ही हल है

  • [IIT 2015]

वक्र $y = {x^3}$ पर अन्तराल $ [-2, 2]$  के बीच स्थित उन बिन्दुओं के भुज, जिन पर खींची गई स्पर्शियों की प्रवणतायें अन्तराल $ [-2, 2]$  के लिए मध्यमान प्रमेय (Mean value theorem)  द्वारा ज्ञात की जा सकती हैं, हैं

अंतराल $ [0, 1] $ में लैंगरेंज मध्यमान प्रमेय निम्न में से किसके लिए लागू नहीं है

  • [IIT 2003]