किन्ही भी दो स्वतन्त्र घटनाओं ${E_1}$ व ${E_2},$ के लिए $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ है
$ \le \frac{1}{4}$
$ > \frac{1}{4}$
$ \ge \frac{1}{2}$
इनमें से कोई नहीं
एक विद्यार्थी के अंतिम परीक्षा के अंग्रेजी और हिंदी दोनों विषयों को उत्तीर्ण करने की प्रायिकता $0.5$ है और दोनों में से कोई भी विषय उत्तीर्ण न करने की प्रायिकता $0.1$ है। यदि अंग्रेज़ी की परीक्षा उत्तीर्ण करने की प्रायिकता $0.75$ हो तो हिंदी की परीक्षा उत्तीर्ण करने की प्रायिकता क्या है ?
यदि घोड़े $A$ के किसी दौड़ को जीतने की प्रायिकता $1/4$ हो और घोड़े $B$ के उसी दौड़ को जीतने की प्रायिकता $1/5$ हो, तो उनमें से किसी एक के दौड़ को जीतने की प्रायिकता है
दो पांसे फेंके जाते हैं। यदि पहले पांसे पर $5$ आता हो, तो दोनों पांसों पर आने वाले अंकों का योग $11$ होने की प्रायिकता है
ताश के $52$ पत्तों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छया निकाला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ $E$ और $F$ स्वतंत्र हैं?
$E :$ 'निकाला गया पत्ता हुकुम का है
$F :$ 'निकाला गया पत्ता इक्का है'
$A$ तथा $B$ दो ऐसी घटनाएँ हैं कि $P ( A \cup B )= P ( A \cap B )$ है, तो निम्न कथनों में से कौन सा कथन गलत है ?