For any two independent events ${E_1}$ and ${E_2},$ $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ is
$ < \frac{1}{4}$
$ > \frac{1}{4}$
$ \ge \frac{1}{2}$
None of these
$A, B, C$ are any three events. If $P (S)$ denotes the probability of $S$ happening then $P\,(A \cap (B \cup C)) = $
$A , B, C$ try to hit a target simultaneously but independently. Their respective probabilities of hitting targets are $\frac{3}{4},\frac{1}{2},\frac{5}{8}$. The probability that the target is hit by $A$ or $B$ but not by $C$ is
Consider three sets $E_1=\{1,2,3\}, F_1=\{1,3,4\}$ and $G_1=\{2,3,4,5\}$. Two elements are chosen at random, without replacement, from the set $E _1$, and let $S _1$ denote the set of these chosen elements.
Let $E_2=E_1-S_1$ and $F_2=F_1 \cup S_1$. Now two elements are chosen at random, without replacement, from the set $F_2$ and let $S_2$ denote the set of these chosen elements.
Let $G _2= G _1 \cup S _2$. Finally, two elements are chosen at random, without replacement, from the set $G _2$ and let $S _3$ denote the set of these chosen elements.
Let $E_3=E_2 \cup S_3$. Given that $E_1=E_3$, let $p$ be the conditional probability of the event $S_1=\{1,2\}$. Then the value of $p$ is
If $A$ and $B$ are two events such that $P(A) = \frac{1}{2}$ and $P(B) = \frac{2}{3},$ then
Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that First ball is black and second is red.