કોઈ શિષ્યવૃતિ માટે મહતમ $n$ ઉમેદવારો કુલ $2n+1$ ઉમેદવારોમાંથી પસંદ કરી શકાય છે જો શિષ્યવૃતિ માટે ઓછામાં ઓછા એક ઉમેદવારને પસંદ કરવાના એવા ભિન્ન $63$ રીતો હોય તો શિષ્યવૃતિ માટે મહતમ કેટલા ઉમેદવારો પસંદ થઈ શકે ?
$2$
$3$
$4$
$5$
$9$ કુમારી અને $4$ કુમારીઓમાંથી $7$ સભ્યોની સમિતિ બનાવવી છે. જેમાં બરાબર $3$ કુમારીઓ હોય એવી કેટલી સમિતિની રચના થઈ શકે ?
ક્રિકેટના $14$ ખેલાડીઓ પૈકી $5$ બોલરો છે. તે પૈકી અગિયાર ખેલાડીઓની ટીમની પસંદગી કેટલી રીતે થઈ શકે જેમાં ઓછામાં ઓછા $ 4 $ બોલર હોય ?
જો વિઘાર્થીએ $2$ ચોક્કસ વિષયો પસંદ કરવાના ફરજિયાત હોય, તો વિદ્યાર્થી ઉપલબ્ધ $9$ વિષયોમાંથી $5$ વિષયો કેટલા પ્રકારે પસંદ કરી શકે.
જો$\sum\limits_{i = 0}^m {\left( {\begin{array}{*{20}{c}}{10}\\i\end{array}} \right)} \,\left( {\begin{array}{*{20}{c}}{20}\\{m - i}\end{array}} \right)\,,$ $\left( {{\rm{where}}\,\left( {\begin{array}{*{20}{c}}p\\q\end{array}} \right)\, = 0\,{\rm{if}}\,p < q} \right)$ નો સરવાળો મહતમ હોય,તો $m$ ની કિંમત મેળવો.
છ ભિન્ન નવલકથા અને ત્રણ ડિક્ષનરી માંથી $4$ નવલકથા અને એક ડિક્ષનરીની પસંદગી કરી હારમાં એવી રીતે ગોઠવામાં આવે છે કે જેથી ડિક્ષનરી હંમેશા વચ્ચે રહે છે.તો આ ગોઠવણી . . . . પ્રકારે થઇ શકે.