एक घन पूर्णाक $n$ के लिए, $\left(1+\frac{1}{ x }\right)^{ n}$ को $x$ की बढ़ती घातों में प्रसारित किया गया है। यदि इस प्रसार में तीन क्रमागत गुणांकों का अनुपात, $2: 5: 12$ है, तो $n$ बराबर है -

  • [JEE MAIN 2020]
  • A

    $115$

  • B

    $128$

  • C

    $138$

  • D

    $118$

Similar Questions

यदि ${(3 + ax)^9}$ के विस्तार में ${x^2}$ व ${x^3}$ के गुणांक बराबर हों, तो $a$ का मान होगा

दिखाइए कि $(1+x)^{2 n}$ के प्रसार में मध्य पद $\frac{1.3 .5 \ldots(2 n-1)}{n !} 2 n\, x^{n},$ है, जहाँ $n$ एक धन पूर्णांक है।

व्यंजक $1 + (1 + x) + {(1 + x)^2} + ..... + {(1 + x)^n}$ के विस्तार में ${x^k}$ का गुणांक $(0 \le k \le n)$ है

$\left(1+x+x^{2}\right)^{10}$ के प्रसार में $x^{4}$ का गुणांक है

  • [JEE MAIN 2020]

यदि $\left(3^{1 / 2}+5^{1 / 8}\right)^{ n }$ के प्रसार में पूर्णाकीय पदों की संख्या मात्र $33$ है, तो $n$ का न्यूनतम मान है

  • [JEE MAIN 2020]