For $\alpha, \beta \in \mathrm{R}$ and a natural number $\mathrm{n}$, let

$A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$. Then $2 A_{10}-A_8$

  • [JEE MAIN 2024]
  • A

     $4 \alpha+2 \beta$

  • B

    $2 \alpha+4 \beta$

  • C

     $2 n$

  • D

    $0$

Similar Questions

The values of $x,y,z$ in order of the system of equations $3x + y + 2z = 3,$ $2x - 3y - z = - 3$, $x + 2y + z = 4,$ are

If the system of equation $2 x+\lambda y+3 z=5$, $3 x+2 y-z=7$, $4 x+5 y+\mu z=9$ has infinitely many solutions, then $\left(\lambda^2+\mu^2\right)$ is equal to :

  • [JEE MAIN 2025]

Let $A=\left(\begin{array}{cc}4 & -2 \\ \alpha & \beta\end{array}\right)$ . If $A ^{2}+\gamma A +18 I = O$, then $\operatorname{det}( A )$ is equal to

  • [JEE MAIN 2022]

For non zero, $a,b,c$ if $\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}} \right| = 0$, then the value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = $

Let $A = \left[ {\begin{array}{*{20}{c}}
  2&b&1 \\ 
  b&{{b^2} + 1}&b \\ 
  1&b&2 
\end{array}} \right]$  where $b > 0$. Then the minimum value of $\frac{{\det \left( A \right)}}{b}$ is

  • [JEE MAIN 2019]