The values of $x,y,z$ in order of the system of equations $3x + y + 2z = 3,$ $2x - 3y - z = - 3$, $x + 2y + z = 4,$ are

  • A

    $2, 1, 5$

  • B

    $1, 1, 1$

  • C

    $1, -2, -1$

  • D

    $1, 2, -1$

Similar Questions

Find area of the triangle with vertices at the point given in each of the following: $(2,7),(1,1),(10,8)$

The existance of the unique solution of the system of equations$2x + y + z = \beta $ , $10x - y + \alpha z = 10$ and $4x+ 3y-z =6$ depends on

The set of all values of $\lambda$ for which the system of linear  $2{x_1} - 2{x_2} + {x_3} = \lambda {x_1}\;,\;2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2}\;\;,$$\;\; - {x_1} + 2{x_2} = \lambda {x_3}$ has a non-trivial solution

  • [JEE MAIN 2015]

If the system of equations $x + 2y + 3z = 4 , x + py + 2z = 3 , x + 4y + \mu z = 3$ has an infinite number of solutions , then :

$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $