If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ then $x \ne 1$ lies in
$(1, 2)$
$(0,1)$
($1$, $\infty $)
($2$, $\infty )$
If ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0,$ then $x$ is equal to
The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is
If ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, then relation between $a$ and $b$ will be
The value of $\left(\left(\log _2 9\right)^2\right)^{\frac{1}{\log _2\left(\log _2 9\right)}} \times(\sqrt{7})^{\frac{1}{\log _4 7}}$ is. . . . . . .
${\log _4}18$ is