For $x \in R$, let $f(x)=|\sin x|$ and $g(x)=\int_0^x f(t) d t .$ Let $p(x)=g(x)-\frac{2}{\pi} x$ Then
$p(x+\pi)=p(x)$ for all $x$
$p(x+\pi) \neq p(x)$ for at least one but finitely many $x$
$p(x+\pi) \neq p(x)$ for infinitely many $x$
$p$ is a one-one function
$\int\limits_0^1 {(1 + |\sin x|)(a{x^2} + bx + c)dx = \int\limits_0^2 {(1 + |\sin x|)(a{x^2} + bx + c)} } dx$ . So, location of the roots of ${a{x^2} + bx + c}=0$ is
Number of values of $x$ satisfying the equation
$\int\limits_{ - \,1}^x {\,\left( {8{t^2} + \frac{{28}}{3}t + 4} \right)\,dt} $ $=$ $\frac{{\left( {{\textstyle{3 \over 2}}} \right)x + 1}}{{{{\log }_{(x + 1)}}\sqrt {x + 1} }}$ , is
The points of intersection of
${F_1}(x) = \int_2^x {(2t - 5)\,dt} $ and ${F_2}(x) = \int_0^x {2t\,dt,} $ are
The true solution set of the inequality,
$\sqrt {5\,x\,\, - \,\,6\,\, - \,\,{x^2}} \,\, + \,\,\frac{\pi }{2}\,\,\int\limits_0^x {} $$dz > x \int\limits_0^\pi {} sin^2 x \,dx$ is :
The numbers $P, Q$ and $R$ for which the function $f(x) = P{e^{2x}} + Q{e^x} + Rx$ satisfies the conditions $f(0) = - 1,$ $f'(\log 2) = 31$ and $\int_0^{\log 4} {[f(x) - Rx]\,dx = \frac{{39}}{2}} $ are given by