मान ज्ञात कीजिए
$\sin 75^{\circ}$
$\sin 75^{\circ}=\sin \left(45^{\circ}+30^{\circ}\right)$
$=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}$
$[\sin (x+y)=\sin x \cos y+\cos x \sin y]$
$=\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right)+\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)$
$=\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
यदि $A = 130^\circ $ तथा $x = \sin A + \cos A,$ तब
एक घड़ी में मिनट की सुई $1.5$ सेमी लंबी है। इसकी नोक $40$ मिनट में कितनी दूर जा सकती हैं $(\pi=3.14$ का प्रयोग करें $) ?$
समीकरण ${\sec ^2}\theta = \frac{{4xy}}{{{{(x + y)}^2}}}$ तभी सम्भव है जब
सिद्ध कीजिए
$2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$
समीकरण ${(a + b)^2} = 4ab\,{\sin ^2}\theta $ तभी सम्भव है जब