Find the value of the trigonometric function $\cot \left(-\frac{15 \pi}{4}\right)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that the values of cot $x$ repeat after an interval of $n$ or $180^{\circ}$

$\therefore \cot \left(-\frac{15 \pi}{4}\right)=\cot \left(-\frac{15 \pi}{4}+4 \pi\right)=\cot \frac{\pi}{4}=1$

Similar Questions

If $\sin A,\cos A$ and $\tan A$ are in $G.P.$, then ${\cos ^3}A + {\cos ^2}A$ is equal to

If in two circles, arcs of the same length subtend angles $60^{\circ}$ and $75^{\circ}$ at the centre, find the ratio of their radii.

If $\cos A = \frac{{\sqrt 3 }}{2},$ then $\tan 3A = $

If $\cos \theta - \sin \theta = \sqrt 2 \sin \theta ,$ then $\cos \theta + \sin \theta $ is equal to

If $\left| {\cos \,\theta \,\left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}\,} \right|\, \le k,$ then the value of $k$ is