Find the angle in radian through which a pendulum swings if its length is $75\, cm$ and the tip describes an arc of length.

$21\,cm$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that in a circle of radius $r$ unit, if an arc of length $l$ unit subtends

An angle $\theta$ radian at the centre, then $\theta=\frac{l}{r}$

It is given that $r=75 \,cm$

Here, $l=21 \,cm$

$\theta=\frac{21}{75}$ radian

$=\frac{7}{25}$ radian

Similar Questions

The equation ${\sec ^2}\theta = \frac{{4xy}}{{{{(x + y)}^2}}}$ is only possible when

  • [IIT 1966]

If $\left| {\,a\,{{\sin }^2}\theta + b\sin \theta \cos \theta + c\,{{\cos }^2}\theta - \frac{1}{2}(a + c)\,} \right|\, \le \frac{1}{2}k,$ then ${k^2}$ is equal to

If $\cos \theta = \frac{1}{2}\left( {x + \frac{1}{x}} \right)$, then $\frac{1}{2}\left( {{x^2} + \frac{1}{{{x^2}}}} \right) = $

If $\alpha = 22^\circ 30',$ then $(1 + \cos \alpha )(1 + \cos 3\alpha )$ $(1 + \cos 5\alpha )(1 + \cos 7\alpha )$ equals

Find the value of $\sin 15^{\circ}$