$\tan 1^\circ \tan 2^\circ \tan 3^\circ \tan 4^\circ ........\tan 89^\circ = $
એક વર્તૂળાકાર તારનો $10\,cm$ વ્યાસ હોય અને આ તાર ને $1$ મીટર વ્યાસના તાર પર રાખવામા આવે તો તારના બંને અંત્યબિંદુથી કેન્દ્ર આગળ બનતા ખૂણાનું મૂલ્ય મેળવો.
જો $75$ સેમી લંબાઈવાળા લોલકનું અંત્યબિંદુ $15$ સેમીનાં ચાપ બનાવે, તો તેણે કેન્દ્ર આગળ બનાવેલ ખૂણાનાં રેડિયન માપ શોધો.
સાબિત કરો કે : $\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x$
જો $A$ એ બીજા ચરણમાં હોય અને $3\tan A + 4 = 0,$ તો $2\cot A - 5\cos A + \sin A$ ની કિમત મેળવો.