Factorise $8 x^{3}+27 y^{3}+36 x^{2} y+54 x y^{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given expression can be written as

$(2 x)^{3}+(3 y)^{3}+3\left(4 x^{2}\right)(3 y)+3(2 x)\left(9 y^{2}\right)$

$=(2 x)^{3}+(3 y)^{3}+3(2 x)^{2}(3 y)+3(2 x)(3 y)^{2}$

$=(2 x+3 y)^{3}$                          (Using Identity $VI$)

$=(2 x+3 y)(2 x+3 y)(2 x+3 y)$

Similar Questions

Verify whether the following are zeroes of the polynomial, indicated against them.

$p(x)=lx+m,\,\, x=-\,\frac{m}{l}$

Factorise $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$.

Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given : $\boxed{\rm {Area}\,:35{y^2}+ 13y - 12}$

Check whether $-2$ and $2$ are zeroes of the polynomial $x + 2$.

Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases :  $p(x)=2 x^{3}+x^{2}-2 x-1$, $g(x)=x+1$.