Find the sum to $n$ terms of the $A.P.,$ whose $k^{\text {th }}$ term is $5 k+1$
It is given that the $k^{\text {th }}$ term of the $A.P.$ is $5 k+1$
$k^{\text {th }}$ term $=a_{k}+(k-1) d$
$\therefore a+(k-1) d=5 k+1$
$a+k d-d=5 k+1$
$\therefore$ Comparing the coefficient of $k ,$ we obtain $d=5$
$\Rightarrow a-d=1$
$\Rightarrow a-5=1$
$\Rightarrow a=6$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{n}{2}[2(6)+(n-1)(5)]$
$=\frac{n}{2}[12+5 n-5]$
$=\frac{n}{2}[5 n+7]$
Find the sum of all two digit numbers which when divided by $4,$ yields $1$ as remainder.
The sum of $n$ terms of two arithmetic progressions are in the ratio $(3 n+8):(7 n+15) .$ Find the ratio of their $12^{\text {th }}$ terms.
Let ${a_1},{a_2},{a_3}, \ldots $ be terms of $A.P.$ If $\frac{{{a_1} + {a_2} + \ldots + {a_p}}}{{{a_1} + {a_2} + \ldots + {a_q}}} = \frac{{{p^2}}}{{{q^2}}},p \ne q$ then $\frac{{{a_6}}}{{{a_{21}}}}$ equals
Let ${\left( {1 - 2x + 3{x^2}} \right)^{10x}} = {a_0} + {a_1}x + {a_2}{x^2} + .....+{a_n}{x^n},{a_n} \ne 0$, then the arithmetic mean of $a_0,a_1,a_2,...a_n$ is
If the sum of first $11$ terms of an $A.P.$, $a_{1} a_{2}, a_{3}, \ldots$is $0\left(\mathrm{a}_{1} \neq 0\right),$ then the sum of the $A.P.$, $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ is $k a_{1},$ where $k$ is equal to