Find the sum of the following series up to n terms:
$5+55+555+\ldots$
$5+55+555+\ldots$
Let $S_{n}=5+55+555+\ldots .$ to $n$ terms
$=\frac{5}{9}[9+99+999+\ldots \ldots \text { to } n \text { terms }]$
$=\frac{5}{9}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots \text { to } n \text { terms }\right]$
$=\frac{5}{9}[\left(10+10^{2}+10^{3}+\text { to } n \text { terms }\right)$
$-(1+1+\ldots \text { to } n \text { terms })]$
$=\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right]$
$=\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
$=\frac{50}{81}\left(10^{n}-1\right)-\frac{5 n}{9}$
If $a,b,c$ are in $A.P.$, then ${2^{ax + 1}},{2^{bx + 1}},\,{2^{cx + 1}},x \ne 0$ are in
Insert three numbers between $1$ and $256$ so that the resulting sequence is a $G.P.$
Consider an infinite $G.P. $ with first term a and common ratio $r$, its sum is $4$ and the second term is $3/4$, then
The numbers $(\sqrt 2 + 1),\;1,\;(\sqrt 2 - 1)$ will be in
The $G.M.$ of roots of the equation ${x^2} - 18x + 9 = 0$ is