$200$ અને $400$ વચ્ચેની $7$ વડે વિભાજ્ય સંખ્યાઓનો સરવાળો શોધો.
The numbers lying between $200$ and $400 ,$ which are divisible by $7,$ are $203,210,217 \ldots .399$
$\therefore$ First term, $a=203$
Last term, $I=399$
Common difference, $d=7$
Let the number of terms of the $A.P.$ be $n.$
$\therefore a_{n}=399=a+(n-1) d$
$\Rightarrow 399=203+(n-1) 7$
$\Rightarrow 7(n-1)=196$
$\Rightarrow n-1=28$
$\Rightarrow n=29$
$\therefore S_{29}=\frac{29}{2}(203+399)$
$=\frac{29}{2}(602)$
$=(29)(301)$
$=8729$
Thus, the required sum is $8729 .$
જો કોઈ $\alpha$ માટે $3^{2 \sin 2 \alpha-1},14$ અને $3^{4-2 \sin 2 \alpha}$ એ પ્રથમ ત્રણ સમાંતર શ્રેણીના પદો હોય તો તે સમાંતર શ્રેણીનું છઠ્ઠું પદ ............ થાય
જો $p,\;q,\;r$ ધન તેમજ સંમાતર શ્નેણીમાં હોય તો કઇ શરત માટે પ્રતિઘાત સમીકરણ $p{x^2} + qx + r = 0$ નાં બિજ વાસ્તવિક બને..
જો $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$ $({x_i} \ne \,0\, $ બધા $\,i\, = 1,2,....,n)$ એ સમાંતર શ્રેણીમાં હોય કે જ્યાં $x_1 = 4$ અને $x_{21} = 20$ અને $x_n > 50$ જ્યાં $n$ એ ન્યૂનતમ ધન પૂર્ણાંક સંખ્યા છે તો $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $ ની કિમત મેળવો
આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=a_{2}=2, a_{n}=a_{n-1}-1,$ માટે $n\,>\,2$
$a$ અને $b$ બે સંખ્યાઓ છે. $A$ સમાંતર મધ્યક અને $S$ એ $a $ અને $b$ વચ્ચેના $n$ સમાંતર મધ્યકોનો સરવાળો દર્શાવે તો $S/A$ કોના ઉપર આધાર રાખે છે ?