$200$ तथा $400$ के मध्य आने वाली उन सभी संख्याओं का योगफल ज्ञात कीजिए जो $7$ से विभाजित हों |

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The numbers lying between $200$ and $400 ,$ which are divisible by $7,$ are $203,210,217 \ldots .399$

$\therefore$ First term, $a=203$

Last term, $I=399$

Common difference, $d=7$

Let the number of terms of the $A.P.$ be $n.$

$\therefore a_{n}=399=a+(n-1) d$

$\Rightarrow 399=203+(n-1) 7$

$\Rightarrow 7(n-1)=196$

$\Rightarrow n-1=28$

$\Rightarrow n=29$

$\therefore S_{29}=\frac{29}{2}(203+399)$

$=\frac{29}{2}(602)$

$=(29)(301)$

$=8729$

Thus, the required sum is $8729 .$

Similar Questions

किसी समांतर श्रेढ़ी में पदों की संख्या सम है। इसके विषम पदों का योग $24$ है तथा सम पदों का योग $30$ है। यदि अंतिम पद, प्रथम पद से $10 \frac{1}{2}$ अधिक है, तो समांतर श्रेढ़ी में पदों की संख्या है

  • [JEE MAIN 2014]

$p,\;q,\;r$ समान्तर श्रेणी में एवं धनात्मक हैं तो वर्ग समीकरण $p{x^2} + qx + r = 0$ के मूल वास्तविक होंगे, यदि

  • [IIT 1995]

यदि $A$, दो संख्याओं का समान्तर माध्य हो और $S$, उन दो संख्याओं के बीच $n$ समान्तर माध्यों का योग हो, तो

यदि संख्याएँ $a,\;b,\;c,\;d,\;e$ एक समान्तर श्रेणी बनाती हैं, तब $a - 4b + 6c - 4d + e$ का मान है

यदि $b _{1}, b _{2}, b _{3}, \ldots b _{11}$ एक वर्धमान $A.P.$ है और इसके पदों का प्रसरण $90$ है, तो इस $A.P.$ का सार्व अन्तर है

  • [JEE MAIN 2020]