If $F _1$ and $F _2$ are two vectors of equal magnitudes $F$ such that $\left| F _1 \cdot F _2\right|=\left| F _1 \times F _2\right|$, then $\left| F _1+ F _2\right|$ equals to

  • A
    $\sqrt{(2+\sqrt{2)}} F$
  • B
    $2 F$
  • C
    $F \sqrt{2}$
  • D
    None of these

Similar Questions

Define the vector product of two vectors.

If for two vectors $\overrightarrow A $ and $\overrightarrow B ,\overrightarrow A \times \overrightarrow B = 0,$ the vectors

If a vector $\vec A$ is parallel to another vector $\vec B$ then the resultant of the vector $\vec A \times \vec B$ will be equal to

The two vectors $\vec A = -2\widehat i + \widehat j + 3\widehat k$ and $\vec B = 7\widehat i + 5\widehat j + 3\widehat k$ are :-

Show that the area of the triangle contained between the vectors $a$ and $b$ is one half of the magnitude of $a \times b .$