अंर्तरास्ट्रीय एवोगाड्रो कोआर्डिनशन परियोजना (The International Avogadro Coordination Project) ने क्रिस्टलीय सिलिकन का उपयोग कर विश्व का सबसे सटीक गोलक बनाया है। इस गोलक का व्यास $9.4 \,cm$ है, तथा व्यास मापने में अनिश्रितता $0.2 \,nm$ है | क्रिस्टल में परमाणु, $a$ भुजा वाले घनों में संकुलित है। घन की भुजा को $2 \times 10^{-9}$ सापेक्षिक त्रुटि से मापा जाता है, एवं प्रत्येक घन में $8$ परमाणु हैं। गोलक के द्रव्यमान में सापेक्षिक त्रुटि निम्न में से किस के करीब होगी ? (मान लीजिए कि सिलिकन का मोलर द्रव्यमान एवं एवोगाड्रो संख्या के मान एकदम सटीक रूप से मालूम हैं।)
गोले की त्रिज्या $(5.3 \pm 0.1) \,cm$ है तो आयतन में प्रतिशत त्रुटि होगी
प्रयोगशाला में एक विद्यार्थी स्क्रूगेज द्वारा तार की मौटाई मापता है। पाट्यांक $1.22\,mm , 1.23\,mm$, $1.19\,mm$ तथा $1.20\,mm$ है। यदि प्रतिशत त्रुटि $\frac{ x }{121} \%$ तो $x$ का मान ज्ञात कीजिये।
एक सरल लोलक की लम्बाई का मान $2 \mathrm{~mm}$ शुद्धता के साथ $20 \mathrm{~cm}$ मापा जाता है। $50$ दोलनों के लिए $1$ सेंकड शुद्धता के साथ मापा समय $40$ सेंकड है। इस माप से गुरूत्वीय त्वरण के मापन की शुद्धता $\mathrm{N} \%$ है। $\mathrm{N}$ का मान है :
एक छात्र सूत्र $Y =\frac{ MgL ^{3}}{4 bd ^{3} \delta}$ का प्रयोग करके यंग प्रत्यास्थता गुणांक ज्ञात करता है। बिना सार्थक त्रुटि के $g$ का मान $9.8\, m / s ^{2}$ लिया जाता है तथा उसके प्रेक्षण निम्नलिखित हैं।
भौतिक राशियां | माप के लिए प्रयुक्त उपकरण का अल्पतमांक | प्रेक्षित मान |
द्रव्यमान $({M})$ | $1\; {g}$ | $2\; {kg}$ |
छड़ की लम्बाई $(L)$ | $1\; {mm}$ | $1 \;{m}$ |
छड़ की चौड़ाई $(b)$ | $0.1\; {mm}$ | $4\; {cm}$ |
छड़ की मोटाई $(d)$ | $0.01\; {mm}$ | $0.4 \;{cm}$ |
अवनमन $(\delta)$ | $0.01\; {mm}$ | $5 \;{mm}$ |
$Y$ के माप में भिन्नात्मक त्रुटि है?