જો $(x-i y)(3+5 i)$ એ $-6-24 i$ ની અનુબદ્ધ સંકર સંખ્યા હોય, તો વાસ્તવિક સંખ્યાઓ $x$ અને $y$ શોધો.
Let $z=(x-i y)(3+5 i)$
$z=3 x+5 x i-3 y i-5 y i^{2}=3 x+5 x i-3 y i+5 y=(3 x+5 y)+i(5 x-3 y)$
$\therefore \bar{z}=(3 x+5 y)-i(5 x-3 y)$
It is given that, $\bar{z}=-6-24 i$
$\therefore(3 x+5 y)-i(5 x-3 y)=-6-24 i$
Equating real and imaginary parts, we obtain
$3 x+5 y=-6$.....$(i)$
$5 x-3 y=24$....$(ii)$
Multiplying equation $(i)$ by $3$ and equation $(ii)$ by $5$ and then adding them, we obtain
$9 x+15 y=-18$
${25 x-15 y=120}$
$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_$
${34 x=102}$
$\therefore x=\frac{102}{34}=3$
Putting the value of $x$ in equation $(i),$ we obtain
$3(3)+5 y=-6$
$\Rightarrow 5 y=-6-9=-15$
$\Rightarrow y=-3$
Thus, the values of $x$ and $y$ are $3 $ and $-3$ respectively.
સમીકરણ $\left( {\frac{{3 - 4ix}}{{3 + 4ix}}} \right) = $ $\alpha - i\beta \,(\alpha ,\beta \,$વાસ્તવિક છે ) નું સમાધાન કરે તેવી $x$ ની કિમત મેળવો.
જો $z$ =${i^{2i}}$ ,હોય તો $|z|$ ની કિમત મેળવો
(જ્યાં $i$ =$\sqrt { - 1}$ )
જો $z = 3 + 5i,\,\,$ તો $\,{z^3} + \bar z + 198 = $
$0$ નો કોણાંક મેળવો.
જો $|z|\, = 1,(z \ne - 1)$ અને $z = x + iy$ તો $\left( {\frac{{z - 1}}{{z + 1}}} \right)$ =. . .