$\frac{1+i}{1-i}-\frac{1-i}{1+i}$ का मापांक ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{1+i}{1-i}-\frac{1-i}{1+i}=\frac{(1+i)^{2}-(1-i)^{2}}{(1-i)(1+i)}$

$=\frac{1+i^{2}+2 i-1-i^{2}+2 i}{1^{2}+1^{2}}$

$=\frac{4 i}{2}=2 i$

$\therefore\left|\frac{1+i}{1-i}-\frac{1-i}{1+i}\right|=|2 i|=\sqrt{2^{2}}=2$

Similar Questions

$\left| {\frac{1}{2}({z_1} + {z_2}) + \sqrt {{z_1}{z_2}} } \right| + \left| {\frac{1}{2}({z_1} + {z_2}) - \sqrt {{z_1}{z_2}} } \right|$ =

$\frac{{1 + \sqrt 3 \,i}}{{\sqrt 3  - i}}$ का कोणांक है  

यदि $|{z_1}| = |{z_2}| = .......... = |{z_n}| = 1,$ तो $|{z_1} + {z_2} + {z_3} + ............. + {z_n}|$=

माना $z,w$ सम्मिश्र संख्यायें हैं जबकि $\overline z  + i\overline w  = 0$ और $arg\,\,zw = \pi $, तब $arg\  z$ बराबर है  

  • [AIEEE 2004]

यदि $\frac{{2{z_1}}}{{3{z_2}}}$ पूर्णतया अधिकल्पित संख्या हो, तब $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right|$का मान  है