જો $\theta $ અને $\phi $ એ લઘુકોણ છે કે જે સમીકરણ $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3}$ નું સમાધાન કરે છે તો $\theta + \phi \in $ . . .
$\left( {\frac{\pi }{3},\,\frac{\pi }{2}} \right)$
$\left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right)$
$\left( {\frac{{2\pi }}{3},\,\frac{{5\pi }}{6}} \right)$
$\left( {\frac{{5\pi }}{6},\pi } \right)$
$'p'$ ની પૂર્ણાક કિમતોની સંખ્યા કેટલી મળે કે જેથી સમીકરણ $99\cos 2\theta - 20\sin 2\theta = 20p + 35$ નો ઉકેલ શક્ય થાય
જો સમીકરણ $2tan\ x \ sin\ x -2 tan\ x + cos\ x = 0$ ને $k$ ઉકેલો $[0,k \pi]$ માં મળે તો $k$ ની પૂર્ણાક કિમતોની સંખ્યા મેળવો.
સમીકરણ $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$ નું સમાધાન કરે તેવા $\theta $ ની ન્યૂનતમ કિમત મેળવો.
જો $\cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0$, તો $\theta $
અંતરાલ $(0,10)$ માં સમીકરણ $\sin x=\cos ^{2} x$ ના ઉકેલોની સંખ્યા $\dots\dots$ છે.