If $1 + \sin x + {\sin ^2}x + .....$ to $\infty = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ then
$x = \frac{\pi }{6}$
$x = \frac{\pi }{3}$
$x = \frac{\pi }{3}$ or $\frac{\pi }{6}$
$x = \frac{\pi }{3}$ or $\frac{{2\pi }}{3}$
Find the general solution of $\cos ec\, x=-2$
Minimum value of the function $f(x) = \left| {\sin \,x + \cos \,x + \tan \,x + \cot \,x + \sec \,x + \ cosec\ x} \right|$ is equal to
If $\cos 7\theta = \cos \theta - \sin 4\theta $, then the general value of $\theta $ is
The number of solution of the equation,$\sum\limits_{r = 1}^5 {\cos (r\,x)} $ $= 0$ lying in $(0, \pi)$ is :
The expression $(1 + \tan x + {\tan ^2}x)$ $(1 - \cot x + {\cot ^2}x)$ has the positive values for $x$, given by