Find the following products using appropriate identities :
$(i) $ $ (x + 3) (x + 3)$
$(ii)$ $(x -3) (x + 5)$
$(i)$ Here we can use Identity $I :(x+y)^{2}=x^{2}+2 x y+y^{2} .$ Putting $y=3$ in it,
we get $(x+3)(x+3)=(x+3)^{2}=x^{2}+2(x)(3)+(3)^{2}$
$=x^{2}+6 x+9$
$(ii)$ Using Identity $IV$ above, i.e., $(x+a)(x+b)=x^{2}+(a+b) x+a b,$ we have
$(x-3)(x+5) =x^{2}+(-3+5) x+(-3)(5)$
$=x^{2}+2 x-15$
Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(t)=2+t+2 t^{2}-t^{3}$
Factorise : $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$
Write the degree of each of the following polynomials :
$(i)$ $5 x^{3}+4 x^{2}+7 x$
$(ii)$ $4-y^{2}$
Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(x)=x^{3}$
Which of the following expressions are polynomials in one variable and which are not ? State reasons for your answer. $4 x^{2}-3 x+7$.