Factorise : $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$
$2 x ^{2}+ y ^{2}+8 z ^{2}-2 \sqrt{2} xy +4 \sqrt{2} yz -8 xz$
$=(-\sqrt{2} x )^{2}+( y )^{2}+(2 \sqrt{2} z )^{2}+2(-\sqrt{2} x )( y )+2(2 \sqrt{2} z )( y )+2(2 \sqrt{2} z )(-\sqrt{2} x )$
$\quad=(-\sqrt{2} x + y +2 \sqrt{2} z )^{2}=(-\sqrt{2} x + y +2 \sqrt{2} z )(-\sqrt{2} x + y +2 \sqrt{2} z )$
Give one example each of a binomial of degree $35 $, and of a monomial of degree $100 $.
Factorise $6x^2 + 17x + 5$ by splitting the middle term, and by using the Factor Theorem.
Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$
Expand $(4a -2b -3c)^2.$
Factorise of the following : $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$