જેનાં નાભિઓ $(±5,\,0)$. હોય અને શિરોબિંદુઓ $(±13,\,0)$ હોય તેવા ઉપવલયનું સમીકરણ મેળવો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since the vertices are on $x-$ axis, the equation will be of the form

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ , where a is the semi-major axis.

Given that $a=13$ , $c=\pm 5$

Therefore, from the relation $c^{2}=a^{2}-b^{2},$ we get

$25=169-b^{2}$,  i.e., $b=12$

Hence the equation of the ellipse is $\frac{x^{2}}{169}+\frac{y^{2}}{144}=1$

Similar Questions

ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ના બિંદુ $P$ આગળ દોરેલો સ્પર્શક યામાક્ષોને $A$ અને $B$ બિંદુઓ આગળ છેદે છે. તો $\Delta OAB$ નું ન્યૂનત્તમ ક્ષેત્રફળ મેળવો.

જો ઉપવલય $3x^2 + 4y^2 = 12$ ના બિંદુ $P$ આગળનો અભિલંબ રેખા $2x + y = 4$ ને સમાંતર અને બિંદુ $P$ આગળનો સ્પર્શક બિંદુ $Q(4, 4)$ માંથી પસાર થતો હોય તો $PQ$ = 

  • [JEE MAIN 2019]

ઉપવલય $\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$ ની નાભિ અને નાભિલંબની લંબાઈ અનુક્રમે $( \pm 5,0)$ અને $\sqrt{50}$ છે, તો અતિવલય $\frac{x^2}{a^2}-\frac{y^2}{a^2 b^2}=1$ ની ઉત્કેન્દ્રતાનો વર્ગ......................... 

  • [JEE MAIN 2024]

જો ઉપવલય $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ એ રેખા $\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$ ને $x$- અક્ષ પર મળે છે અને રેખા $\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$ ને $y$-અક્ષ પર મળે છે તો ઉપવલયની ઉકેન્દ્રીતા  . .  . થાય.

  • [JEE MAIN 2022]

પ્રથમ ચરણમાં રેખા $y=m x$ અને ઉપવલય $2 x^{2}+y^{2}=1$ બિંદુ $\mathrm{P}$ આગળ છેદે છે . જો બિંદુ $P$ આગળનો અભિલંભ અક્ષોને $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ અને $(0, \beta)$ આગળ છેદે છે તો $\beta$ મેળવો.

  • [JEE MAIN 2020]