જો ઉપવલય $3x^2 + 4y^2 = 12$ ના બિંદુ $P$ આગળનો અભિલંબ રેખા $2x + y = 4$ ને સમાંતર અને બિંદુ $P$ આગળનો સ્પર્શક બિંદુ $Q(4, 4)$ માંથી પસાર થતો હોય તો $PQ$ =
$\frac{{\sqrt {157} }}{2}$
$\frac{{5\sqrt 5 }}{2}$
$\frac{{\sqrt {221} }}{2}$
$\frac{{\sqrt {61} }}{2}$
ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ ની નાભિઓ માંથી પસાર થતું અને $(0,3) $ કેન્દ્ર ધરાવતું વર્તૂળનું સમીકરણ મેળવો.
જો ઉપવલય $\frac{{{x^2}}}{{27}} + \frac{{{y^2}}}{3} = 1$ પરના બિંદુએથી બનાવેલ સ્પર્શક યામાક્ષોને બિંદુ $A$ અને $B$ માં છેદે તથા $O$ એ ઉંગમબિંદુ હોય તો ત્રિકોણ $OAB$ નું ન્યૂનતમ ક્ષેત્રફળ ચો. એકમ માં મેળવો.
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ પ્રધાન અક્ષનાં અંત્યબિંદુઓ $(0,\, \pm \sqrt{5})$, ગૌણ અક્ષનાં અંત્યબિંદુઓ $(±1,\,0)$
શાંકવ $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,$ ને રેખા $x\cos \alpha \,\, + \,y\sin \,\alpha \,\, = \,p\,\,$ ક્યારે સ્પર્શશે?
જો $-4/3$ ઢાળવાળો ઉપવલય$\frac{{{x^2}}}{{18}}\,\, + \;\,\frac{{{y^2}}}{{32}}\,\, = \,\,1$ નો સ્પર્શક, પ્રધાન અક્ષ અને ગૌણ અક્ષને અનુક્રમે $A$ અને $B$ માં છેદે તો $\Delta OAB$ નું ક્ષેત્રફળ .......... ચો. એકમ