प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष, $x-$ अक्ष पर और बिंदुओं $(4,3)$ और $(6,2)$ से जाता है।
since the major axis is on the $x-$ axis, the equation of the ellipse will be of the form
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ .......... $(1)$
Where, a is the semi-major axis
The ellipse passes through points $(4,\,3)$ and $(6,\,2)$ . Hence,
$\frac{16}{a^{2}}+\frac{9}{b^{2}}=1$ .......... $(2)$
$\frac{36}{a^{2}}+\frac{4}{b^{2}}=1$ .......... $(3)$
On solving equations $(2)$ and $(3),$ we obtain $a^{2}=52$ and $b^{2}=13$
Thus, the equation of the ellipse is $\frac{x^{2}}{52}+\frac{y^{2}}{13}=1$ or $x^{2}+4 y^{2}=52$
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
शीर्षों $(\pm 5,0),$ नाभियाँ $(±4,0)$
माना कि $F_1\left(x_1, 0\right)$ और $F_2\left(x_2, 0\right)$ (जिसमें $x_1<0, x_2>0$ ) दीर्घवृत्त (ellipse) $\frac{x_2^2}{9}+\frac{y^2}{8}=1$ की नाभियाँ (Foci) हैं। माना कि एक परवलय (parabola) जिसका शीर्ष (vertex) मूलबिन्दु (origin) पर और नाभि (focus) $F_2$ पर है, दीर्घवृत्त को प्रथम चतुर्थांश (first quadrant) में $M$ पर और चतुर्थ चतुर्थांश (fourth quadrant) में $N$ पर प्रतिच्छेदित करता है।
($1$) त्रिभुज $F_1 M N$ का लंबकेन्द्र (orthocentre) है
$(A)$ $\left(-\frac{9}{10}, 0\right)$ $(B)$ $\left(\frac{2}{3}, 0\right)$ $(C)$ $\left(\frac{9}{10}, 0\right)$ $(D)$ $\left(\frac{2}{3}, \sqrt{6}\right).$
($2$) यदि दीर्घवृत्त के बिन्दुओं $M$ और $N$ पर स्परिखाएँ (tangents) $R$ पर मिलती हैं और परवलय के बिन्दु $M$ पर अभिलंब $x$-अक्ष को $Q$ पर मिलता है, तब त्रिभुज $M Q R$ के क्षेत्रफल और चतुर्भुज (quadrilateral) $M F_1 N F_2$ के क्षेत्रफल का अनुपात (ratio) है
$(A)$ $3: 4$ $(B)$ $4: 5$ $(C)$ $\sec 5: 8$ $(D)$ $2: 3$
दिये गए सवाल का जवाब दीजिये ($1$) और ($2$)
दीर्घवृत्त का समीकरण जिसकी नाभि $(-1,1)$ है जिसकी नियता $x - y + 3 = 0$ तथा जिसकी उत्केन्द्रता $\frac{1}{2}$ है , होगा
वक्र $16{x^2} + 25{y^2} = 400$ की नाभियाँ हैं
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के अक्ष तथा स्पश्री के मध्य खींची गयी रेखा के मध्य बिन्दु का बिन्दुपथ होगा