આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ નાભિઓ $(\pm 3,\,0),\,\, a=4$
Foci $(\pm 3,0), a=4$
since the foci are on the $x-$ axis, the major axis is along the $x-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semimajor axis.
Accordingly, $c=3$ and $a=4$
It is known that $a^{2}=b^{2}+c^{2}$
$\therefore 4^{2}=b^{2}+3^{2}$
$\Rightarrow 16=b^{2}+9$
$\Rightarrow b^{2}=16-9=7$
Thus, the equation of the ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$
જો ઉપવલયનો નાભિલંબ તેની ગૌણ અક્ષ કરતાં અડધો હોય, તો તેની ઉન્કેન્દ્રિતા ...
અહી $\theta$ એ ઉપવલય $\frac{x^{2}}{9}+\frac{y^{2}}{1}=1$ અને વર્તુળ $x^{2}+y^{2}=3$ નાં પ્રથમ ચરણનાં છેદબિંદુ આગળનાં સ્પર્શકો વચ્ચેનો ખૂણો છે તો $\tan \theta$ ની કિમંત મેળવો.
જો $\alpha$ અને $\beta$ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ની નાભિજીવાના અંત્યબિંદુઓના ઉત્કેન્દ્રીકરણ હોય, તો $tan\ \alpha /2. tan\ \beta/2 = ....$
ઉપવલય $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ પરનું બિંદુ $P$ એ દ્રીતીય ચરણમાં એવી રીતે આપેલ છે કે જેથી બિંદુ $\mathrm{P}$ આગળનો ઉપવલયનો સ્પર્શક એ રેખા $x+2 y=0$ ને લંબ થાય છે. અહી $S$ અને $\mathrm{S}^{\prime}$ એ ઉપવલયની નાભીઓ છે અને $\mathrm{e}$ એ ઉત્કેન્દ્રિતા છે. જો $\mathrm{A}$ એ ત્રિકોણ $SPS'$ નું ક્ષેત્રફળ છે તો $\left(5-\mathrm{e}^{2}\right) . \mathrm{A}$ ની કિમંત મેળવો.
ઉપવલય $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ ની નાભિલંબના અત્યબિંદુએ દોરવામાં આવેલ સ્પર્શક દ્વારા બનતા ચતુષ્કોણનું ક્ષેત્રફળ ............... $\mathrm{sq. \, units}$ મેળવો.