द्विपद प्रमेय का उपयोग करते हुए गुणनफल $(1+2 a)^{4}(2-a)^{5}$ में $a^{4}$ का गुणांक ज्ञात कीजिए।
We first expand each of the factors of the given product using Binomial Theorem. We have
${(1 + 2a)^4} = {\,^4}{C_0} + {\,^4}{C_1}(2a) + {\,^4}{C_2}{(2a)^2} + {\,^4}{C_3}{(2a)^3} + {\,^4}{C_4}{(2a)^4}$
$=1+4(2 a)+6\left(4 a^{2}\right)+4\left(8 a^{3}\right)+16 a^{4}$
$=1+8 a+24 a^{2}+32 a^{3}+16 a^{4}$
and ${(2 - a)^5} = {\,^5}{C_0}{(2)^5} - {\,^5}{C_1}{(2)^4}(a) + {\,^5}{C_2}{(2)^3}{(a)^2} - {\,^5}{C_3}{(2)^2}{(a)^3}$
$ + {\,^5}{C_4}(2){(a)^4} - {\,^5}{C_5}{(a)^5}$
$=32-80 a+80 a^{2}-40 a^{3}+10 a^{4}-a^{5}$
Thus $(1+2 a)^{4}(2-a)^{5}$
$=\left(1+8 a+24 a^{2}+32 a^{3}+16 a^{4}\right)$
$\left(32-80 a+80 a^{2}-40 a^{3}+10 a^{4}-a^{5}\right)$
The complete multiplication of the two brackets need not be carried out. We write only those terms which involve $a^{4}$. This can be done if we note that ${a^r}.{a^{4 - r}} = {a^4}.$ The terms containing $a^{4}$ are
$1\left(10 a^{4}\right)+(8 a)\left(-40 a^{3}\right)+\left(24 a^{2}\right)\left(80 a^{2}\right)+\left(32 a^{3}\right)(-80 a)+\left(16 a^{4}\right)(32)=-438 a^{4}$
$\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$ के प्रसार में $x$ से स्वतंत्र पद है
${(a + 2x)^n}$ के विस्तार में $r$ वाँ पद होगा
गुणांक ज्ञात कीजिए
$(x+3)^{8}$ में $x^{5}$ का
${\left( {x + \frac{1}{{2x}}} \right)^{2n}}$ के विस्तार में मध्य पद है
यदि $\left(x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{1}{3}}}\right)^{18},(x>0)$, के प्रसार में $x^{-2}$ तथा $x^{-4}$ के गुणांक क्रमशः $m$ तथा $n$ हैं, तो $\frac{m}{n}$ बराबर है