Find the coefficient of $a^{4}$ in the product $(1+2 a)^{4}(2-a)^{5}$ using binomial theorem.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We first expand each of the factors of the given product using Binomial Theorem. We have

${(1 + 2a)^4} = {\,^4}{C_0} + {\,^4}{C_1}(2a) + {\,^4}{C_2}{(2a)^2} + {\,^4}{C_3}{(2a)^3} + {\,^4}{C_4}{(2a)^4}$

$=1+4(2 a)+6\left(4 a^{2}\right)+4\left(8 a^{3}\right)+16 a^{4}$

$=1+8 a+24 a^{2}+32 a^{3}+16 a^{4}$

and  ${(2 - a)^5} = {\,^5}{C_0}{(2)^5} - {\,^5}{C_1}{(2)^4}(a) + {\,^5}{C_2}{(2)^3}{(a)^2} - {\,^5}{C_3}{(2)^2}{(a)^3}$

                $ + {\,^5}{C_4}(2){(a)^4} - {\,^5}{C_5}{(a)^5}$

$=32-80 a+80 a^{2}-40 a^{3}+10 a^{4}-a^{5}$

Thus $(1+2 a)^{4}(2-a)^{5}$

$=\left(1+8 a+24 a^{2}+32 a^{3}+16 a^{4}\right)$

$\left(32-80 a+80 a^{2}-40 a^{3}+10 a^{4}-a^{5}\right)$

The complete multiplication of the two brackets need not be carried out. We write only those terms which involve $a^{4}$. This can be done if we note that ${a^r}.{a^{4 - r}} = {a^4}.$ The terms containing $a^{4}$ are

$1\left(10 a^{4}\right)+(8 a)\left(-40 a^{3}\right)+\left(24 a^{2}\right)\left(80 a^{2}\right)+\left(32 a^{3}\right)(-80 a)+\left(16 a^{4}\right)(32)=-438 a^{4}$

Similar Questions

Show that the middle term in the expansion of $(1+x)^{2 n}$ is
$\frac{1.3 .5 \ldots(2 n-1)}{n !} 2 n\, x^{n},$ where $n$ is a positive integer.

The coefficients of three successive terms in the expansion of ${(1 + x)^n}$ are $165, 330$ and $462$ respectively, then the value of n will be

The term independent of $x$ in the expansion ${\left( {{x^2} - \frac{1}{{3x}}} \right)^9}$ is

The number of positive integers $k$ such that the constant term in the binomial expansion of $\left(2 x^{3}+\frac{3}{x^{k}}\right)^{12}, x \neq 0$ is $2^{8} \cdot \ell$, where $\ell$ is an odd integer, is......

  • [JEE MAIN 2022]

The coefficient of ${x^{39}}$ in the expansion of ${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ is