Find the coefficient of $x^{6} y^{3}$ in the expansion of $(x+2 y)^{9}$
Suppose $x^{6} y^{3}$ occurs in the $(r+1)^{\text {th }}$ term of the expansion $(x+2 y)^{9}$
Now ${T_{r + 1}} = {\,^9}{C_r}{x^{9 - r}}{(2y)^r} = {\,^9}{C_r}{2^r} \cdot {x^{9 - r}} \cdot {y^r}$
Comparing the indices of $x$ as well as $y$ in $x^{6} y^{3}$ and in $T_{r+1},$ we get $r=3$
Thus, the coefficient of $x^{6} y^{3}$ is
${\,^9}{C_3}{2^3} = \frac{{9!}}{{3!6!}} \cdot {2^3} = \frac{{9.8.7}}{{3.2}} \cdot {2^3} = 672$
The coefficient of ${x^{ - 7}}$ in the expansion of ${\left( {ax - \frac{1}{{b{x^2}}}} \right)^{11}}$ will be
Let $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$ and $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$. Then which of the following statements is (are) $TRUE$?
$(A)$ $Z \cup T_1 \cup T_2 \subset S$
$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, where $\phi$ denotes the empty set
$(C)$ $T_2 \cap(2024, \infty) \neq \phi$
$(D)$ For any given $a, b \in Z , \cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ if and only if $b=0$, where $i=\sqrt{-1}$
The coefficient of $x^4$ in ${\left[ {\frac{x}{2}\,\, - \,\,\frac{3}{{{x^2}}}} \right]^{10}}$ is :
The coefficient of the middle term in the binomial expansion in powers of $x$ of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is the same if $\alpha$ equals
The coefficient of the term independent of $x$ in the expansion of $(1 + x + 2{x^3}){\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ is