The coefficient of $x^4$ in ${\left[ {\frac{x}{2}\,\, - \,\,\frac{3}{{{x^2}}}} \right]^{10}}$ is :

  • A

    $\frac{{405}}{{256}}$

  • B

    $\frac{{504}}{{259}}$

  • C

    $\frac{{450}}{{263}}$

  • D

    $\frac{{405}}{{512}}$

Similar Questions

The term independent of $x$ in the expansion of ${\left( {2x - \frac{3}{x}} \right)^6}$ is

If ${x^4}$ occurs in the ${r^{th}}$ term in the expansion of ${\left( {{x^4} + \frac{1}{{{x^3}}}} \right)^{15}}$, then $r = $

If the coefficients of $x^{7}$ in $\left(x^{2}+\frac{1}{b x}\right)^{11}$ and $x^{-7}$ in $\left(x-\frac{1}{b x^{2}}\right)^{11}, b \neq 0$, are equal, then the value of $b$ is equal to:

  • [JEE MAIN 2021]

If the constant term in the expansion of $\left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[3]{5}}\right)^{12}, x \neq 0$, is $\alpha \times 2^8 \times \sqrt[5]{3}$, then $25 \alpha$ is equal to :

  • [JEE MAIN 2024]

Prove that $\sum\limits_{r = 0}^n {{3^r}{\,^n}{C_r} = {4^n}} $